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INTRODUCTION

Over the past few years we have been developing finite element based procedures for the
solution of high speed viscous compressible flows. In this research contract, which extends
over a three year period, the objective is to build upon the finite element concepts which have
already been demonstrated and to develop these ideas to produce a method which is applicable
to the solution of large scale practical problems. The problems of interest range from 3D full
vehicle Euler simulations to local analysis of 3D viscous laminar flow. Transient Euler flow
simulations involving moving bodies are also to be included. An important feature of the
research is to be the coupling of the flow solution methods with thermal/structural modelling
techniques to provide an integrated fluid/thermal/structural modelling capability. Here we report
upon the progress made towards achieving these goals during the first twelve month period of
the research.

WORK ACCOMPLISHED

Over the past twelve months the research activity has concentrated on the two main areas of
flow modelling and thermal modelling. Within the area of flow modelling work has been
directed towards improving the efficiency, reliability and performance of an unstructured mesh
generation technique. An implicit centred scheme for the solution of the Navier-Stokes
equations has been investigated and initial work has been undertaken on the construction of an
upwind scheme based upon the use of quadratic elements. An investigation into the
possibilities of using space marching methods within the unstructured grid context has also
been made. Within the area of thermal modelling, an explicit transient adaptive mesh approach
for thermal problems has been produced and an implicit thermal solver based upon the use of
the conjugate gradient algorithm has been developed. A description of the work
accomplishments within each of these areas will now be given.

FLOW MODELLING
Progress in Mesh Generation Reliability, Efficiency and Performance

Over the past twelve months, work has been directed towards the improving the control and the
quality of the meshes which are generated. Procedures for removing distorted elements and for
mesh smoothing have been incorporated within the generators. These procedures are carried
out automatically as the generation is performed. The surface generator has also been modified
and made more general. The basic surface generator is currently under modification to enable it
to handle open surfaces and to perform adaptive remeshing based upon quantities which are
defined only on the surface. This feature was requested by the Aerothermal Loads Branch at



Langley R.C. as it will enable the software to be applied to the analysis of thermal stress
development in shells and panelled structures. The process of fully documenting both the flow
solvers and the mesh generation software has also begun. The new version of the mesh
generation software was fully tested in an inviscid analysis of the flow over a shuttle vehicle.
The intention was to reproduce certain computations reported earlier [1,2]. The particular flow
case considered consisted of a free stream Mach number of 6 and an angle of attack of 26.6
degrees. A view of the surface mesh employed is given in figure Oa and a view of the
computed solution in the symmetry plane is shown in figure Ob. The flow visualisation was
accomplished by writing an interface program to enable us to use the software developed for
viewing solutions computed on unstructured grids by R. Lohner for the CFD Branch at
Langley R.C. Work has also commenced on the modelling of the flow over a shuttle with
boosters, using the geometrical definition shown in figure Oc. To date, a mesh of roughly 2
million elements has been generated and a detail of the corresponding surface discretisation is
shown in figure Od. This mesh is to be used for flow computations and will be used later as the
starting point in the modelling of the transient flow during a the shuttle separation.

Implicit Centred Scheme for the Navier-Stokes Equations

A fast algonthm has been dev1sed for constructing continuous hnes made up of element sides,
which pass through each node of a general unstructured tnangular mesh and which are
generally ahgned in prescrlbed directions. The lines are used as a basxs of an adaptlve fuIIy'

implicit unstructured grid procedure for the solution of two d1mens1ona1 problems of steady
high speed ﬂows where the equation system 1s solved by hne relaxauon using a block 7
tridiagonal equatxon solver The flow algorithm is based  upon an 1mphc1t ﬁmte element scheme
of the Taylor-Galerkm famlly The method has been used w1th success for the solution of both
transonic inviscid and hypersomc lammar viscous problems ln“two‘dirnen51ons An initial
approach for the solution of viscous ﬂows in three dimensions has been based upon the use ofr
an implicit/explicit algorlthm To achieve this, a grid exhlbmng structure 1n the normal direction
is employed in the vicinity of solid walls whlle away from these regions, the grid is totally
unstructured. In the structured region lines in the normal direction arefreadlly identified, while
lines in the surfaces parallel to the walls are constructed usmg the proposed two dimensional
procedure. The 1mp11cxt form of the algorithm i is used in the structured region, with the equation
system solution being achieved by line relaxation. An explicit Taylor-Galerkin method is used
on the unstructured portion of the mesh. This method has been used to successfully solve three
dimensional hypersonic laminar viscous flow over a double ellipsoid configuration and to
produce results which compare well with the available experimental observations of pressure

and heating rate distributions.



Quadratic Upwind Algorithm

A vectorised version of a cell centred scheme for the solution of the compressible laminar
Navier-Stokes equations has been produced. The method uses Roe's approximate Riemann
solver with a higher order extension based upon linear reconstruction with slope limiting. The
vectorisation has proved to be effective with a vector/scalar speed-up ratio of around eleven
being achieved. However, this viscous code has caused a large number of problems which we
are still attempting to resolve. A detailed analysis of a Mach 14 flow over a 24 degree
compression comer has been attempted. While the solutions on structured triangular meshes of
26*26 and 51*51 appear to behave as expected, the computed solution on a structured
101*101 mesh exhibits a strange behaviour. On this mesh, there is a tendency for the code to
predict a separation length which increases with the number of iterations computed.
Investigations are continuing to attempt to understand if this is a problem with highly stretched
triangular elements or if there is a problem with the basic algorithmic implementation. It is still
our intention to attempt a solution of this problem on a mesh of over 60,000 elements, with
over 3,000 points on the wall, when these difficulties have been overcome. The advantage of
this mesh is that the cells near the wall will all have an aspect ratio of around unity, so it can be
claimed that the computed solution is free from aspect ratio effects. An investigation of the
behaviour of the algorithm with quadratic reconstruction has been made within the context of
the Euler equations. Initial experiences have indicated that the method is certainly less sensitive
to variations in the grid than the algorithm using linear reconstruction. However, the method
has associated stability and limiting problems which need to be addressed before it is possible
to produce a robust implementation.

Space Marching

As this is a new activity area for us, we will describe our work in some detail. It is well known
that in a supersonic flow field the disturbances are carried down stream. This physical property
can be employed to devise efficient algorithms for the numerical solution of supersonic steady
state problems. The class of schemes based on this line of reasoning are known as space
marching schemes [3]. Here, the domain of interest is divided into planes which are nearly
normal to the direction of the flow. Since the solution at each of these planes (stations) depends
only on the solution in the upstream stations, the steady state equations can be solved
completely for each plane and the solution marched downstream. Hence, the solution can be
obtained by performing only one sweep over the computational domain. The supersonic flow
regime is characterised by strong discontinuities. Upwind methods are used, due to their
excellent properties in handling such flow features. For realistic flows, even when the free
stream Mach number is much higher than unity, regions of subsonic flow exist near the surface
of the body [4]. In these subsonic regions (pockets), disturbances are propagated in all



directions. As a result, the space marching technique can not be applied for the subsonic parts
of the flow field. An efficient procedure can be obtained by combining the use of space
marching in the prevailing supersonic regions of the flow and time marching in the subsonic
regions. This approach has been proposed by Chakravarthy and Szema [5] to solve the Euler
equations for an analytical forebody configuration. For space marching schemes, mesh
generation requires some consideration. Unstructured grids provide great flexibility in
handling complex realistic geometries, however, it can be seen from the above discussion that
space marching techniques require a structured mesh. Here, a compromise is arrived at by
using grids which exhibit a structure in the direction of the flow but are otherwise unstructured
[6]. An upwind space marching algorithm, based on the upwind cell centred scheme already
implemented at the Aerothermal Loads Branch, NASA Langley Research Center, is presented
for the Euler equations. Application of this approach is first described for the case of a fully
supersonic flow. A discussion on the types of grids suitable for this method is given. A
synopsis of the mesh enrichment procedure for improving the quality of the solution, whilst
retaining the basic structure of the grid is presented. Attention is then drawn to more realistic
situations where the supersonic flow contains pockets of subsonic flow. In this case the
solution domain is divided into space marching and time marching regions. The formulation of
the numerical scheme is derived from the Euler equations in transient form. Hence, a uniform
approach can be taken for both space marching and time marching zones. The extension to
higher order accuracy is then considered. Calculation of the gradients requires the use of values
from downstream planes, which is in conflict with the space marching philosophy. This
problem is addressed and a remedy provided. Numerical examples are presented to evaluate the

performance of the new algorithm.
Space marching for the Euler equations, fully supersonic flow

For many practical high speed flight situations, where the body is slender, the direction of the
flow around the body does not vary drastically from the free stream direction. For these cases,
the domain of interest can be subdivided into a set of planes which are roughly normal to the
direction of the flow. The mesh generation within each of these planes can be completely
unstructured. The equations to be solved are the steady state Euler equations which can be
written in the following compact form

oF;

—=0 i=1,2 1
o (1

However, in order to have a unified formulation for both supersonic and subsonic regions, the
equations are considered in their transient form. The numerical discretisation is basically
achieved by a cell centred formulation and the numerical flux of Roe [7] is used when the



solution of a Riemann problem is required. For fully supersonic flows, starting from the
inflow, the time dependent equations can be solved for each marching plane in turn. The finite
volume formulation can be written as

au, 1
. L yrs
" QZH (2)
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where Q. is the area of the element e and . is the length of the side s, . If a side has both its
neighbouring elements in the marching plane then the numerical fluxes, denoted by F,, , are
obtained by use of the approximate Riemann solver. For the sides that lie on the boundaries of
the marching plane the numerical flux is simply calculated using the upwind element values,
and application of an approximate Riemann solver is unnecessary (see figure 1). As long as the
component of the flow velocity normal to the marching plane remains supersonic, this
procedure is correct. It is clear that this determination of the numerical fluxes implies that there
is no contribution from the downstream elements. By choosing a large time step (e.g. of the
order of 10%) the transient term in equation (2) is negligible and the formulation leads to an
iterative procedure for the steady state equations. The system of equations resulting from a
discretisation of (2) is solved implicitly, in the marching plane, according to a point implicit
iteration. It should be noted that the sweeping is now only performed over the number of
elements in the marching plane, and not over the total number of elements, thereby achieving
fast convergence for fully supersonic flows. Once the solution is obtained for a marching
plane, the same procedure is repeated for the next plane downstream. In this manner one sweep
over the domain will result in the steady state solution being obtained.

Mesh enrichment

The advancing front technique for mesh generation [8] starts from a coarse background grid.
Within this grid, starting from the boundaries of the domain, new mesh points are introduced
according to some geometric parameters. These parameters are the node spacing,d ; the
stretching parameter, s ; and a direction of stretching denoted by the vector s. New elements
are formed by connecting the generated points in a manner that prevents the generation of
highly distorted elements, and the process is continued until the whole domain is covered. This
generator also has the capability of generating grids within pre-specified regions. For the grids
employed here, each marching plane is defined as an independent region for the mesh
generator. One of the main advantages of using unstructured grids is the ease in which mesh
refinement can be carried out. The mesh refinement procedure is more restricted for space
marching calculations, since the structure of the marching planes must be preserved. So the
adaptive remeshing technique, used in the previous chapters to improve the quality of the grids
and hence the solution, is not directly applicable here. Mesh enrichment [9], however, has the



property that the underlying structure of the mesh does not change. The structure of the devised
mesh enrichment algorithm is now discussed. An important factor in mesh refinement is the
evaluation of an error indicator which is an indication of the level of error in the numerical
solution on the present mesh. For problems where the analytical solution is not available, and
indeed these are the problems which we are interested in, it is not possible to determine the
exact level of error introduced by a numerical scheme. For the inviscid problems, considered
here, the mesh is refined in order that more elements are introduced where the gradients in the
solution are large. Therefore, the gradient of a chosen variable can be a basis for the error
indicator. This variable, termed as the key variable, is usually taken to be either the density, the
pressure, or the local Mach number. The gradients of the key variable are determined for each
element from the point values of the variables and the derivatives of the standard linear shape
functions [10] as
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where m is the local vertex number and Vp represents the value of the key variable at vertex P.
The summation, in the above equation, takes place over the vertices of each triangular element.
In equation (3), N,, is the linear triangular shape function for vertex m . Expressions for other
vertices follow from a cyclic permutation of subscripts in the order i, j, k¥ . The point values in
turn, are obtained from the cell-averaged values via a consistent finite element procedure which

can be written as

22y,
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where V,is the cell-averaged value of the key variable at element e. In the above equation the

(4)

summanon extends over all the elements surrounding pomt P. The maximum gradient of V
over cach element is obtained from the expression § ' ' '
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The maximum value of the error indicator denoted here by 8 is determined by sweeping over

all the elements as

B =max( $2VV,) (6)



The criteria for mesh enrichment is that all the elements where the error indicator is larger than a
certain proportion of 8 , i.e. those elements for which

QVU.>af )

need to be refined. In the above inequality « is the scaling factor. In this way the region which
needs to be refined can be determined. To avoid the creation of points which are not
consistently connected to the other points, care must be taken for the elements that lie on the
boundary of the refinement region. If any element has all its three vertices lying on this
boundary then this element is also added to the refinement zone. This is illustrated in figure 2.
Indicating the refinement region by (2g, all the elements in £2g are subdivided into four
triangular elements as shown in figure 3. Application of this procedure will lead to introducing
some points, which are not properly connected to their surrounding elements, around the
boundary of £2g. This problem is solved by subdividing the elements that have two of their
vertices on the boundary of £z into two. The final refined mesh is as shown in figure 4. It
should be emphasized here, that the mesh enrichment procedure does not lead to any change in
the number of marching planes. Therefore, only the number of elements in those marching
planes where the refinement has taken place will change.

Supersonic flow with subsonic pockets

For supersonic flow with subsonic pockets, the problem is to track down and identify the
subsonic regions and solve the equations in those regions by using a time marching scheme.
The algorithm devised to accomplish this goal can be described through the following stages:

I. Starting from the inflow each plane is solved in turn without taking contributions
from downstream. For the first sweep across the plane, which is defined as first sweeping over
the elements according to their numbering and then sweeping in the reverse order, a small CFL
number is used. The reason for using a small Courant number is that if the flow at steady state
in a particular plane is subsonic, a relaxation procedure must be used and this calls for a
sensible choice of the time step size and a consideration of downstream conditions.

II. The local Mach number is calculated for all the elements in the marching plane. If
this is less than unity (subsonic) for any of these elements, the current marching plane is
recorded as pertaining to the relaxation region.

II1. The plane recorded as being subsonic in stage II and its two adjacent planes are
taken to be the relaxation region (see figure 5) which has to be solved by standard time
marching techniques. Since the flow in marching planes mp-/ and mp+1 is still supersonic,
there is no need to consider contributions from the next neighbouring planes. It should be
noted here that application of the time marching relaxation method to a supersonic plane is



allowed, but the contrary, i.e. using a space marching method for a subsonic plane, is not
permitted. Therefore, the numerical relaxation region must contain the physical subsonic region
for the whole scheme to be consistent and stable.

IV. After one sweep over the subsonic region the two planes which form the
boundaries of the relaxation region ( in this case planes mp-1 and mp+1 ) are checked to see if
any subsonic velocity has formed. There are two possibilities:

IV.a. If the flow is subsonic in one or both of these planes , for the next sweep the
next neighbouring plane will also be included in the relaxation region. For example if after
stage III the flow has become subsonic in some positions in plane mp-1, the relaxation region
is extended to include plane mp-2. Then the solution of the unsteady equations in the relaxation
region continues (stage III).

IV.b. If the flow is still supersonic, stage III is repeated until convergence in the
relaxation region is achieved.

By repetition of stages III and IV the subsonic region gradually forms until it reaches its
full extension in the steady state (See figure 6). It should be mentioned here that this procedure
is compatible with the physical behaviour of the flow around a body which has suddenly
"materialised” in a supersonic regime. Once the subsonic region is fully formed, step IV will
not add any new plane to the relaxation region and the time marching procedure will be
continued in the relaxation region until convergence is obtained.

V. When the steady state is achieved in the relaxation region, the space marching
procedure is continued downstream.

The numerical examples presented here have indicated that the above procedure is capable of
producing results which are consistent with the results of time marching calculations.

Higher order spatial accuracy

The extension to higher order accuracy follows from the use of linear reconstruction with
limiting. There are, however, some modifications necessary to comply with the requirements
of the space marching technique. The standard procedure makes use of the values of the
variables in all the elements which have a common vertex with the element being considered.
But the space marching methodology is based on the assumption that information does not
propagate upstream. This calls for a reformulation of the gradient recovery procedure as
follows. Consider the marching plane mp where the flow is fully supersonic, and its
neighbouring planes. From the cell-averaged values of the variables the corresponding values



are calculated at the vertices. This is done in a consistent finite element manner as described
above. Hence for a point K and its surrounding elements one can write
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It should be noted that the summation extends over the elements in the marching plane and its
neighbouring upstream plane (see figure 7). If the plane is in the subsonic region the
summation takes place over all the surrounding elements and the formulation will be identical to
(4). The limiting procedure is accomplished by employing the standard method used in the
upwind cell centred code. The evaluation of the maximum and minimum allowable values,
however, must be done differently. If the marching plane is in the space marching zone
(supersonic flow every where across the plane) then only those neighbouring elements which
are in the marching plane itself and the upstream planes are considered. This is due to the fact
that the downstream values are not updated. This method may not be always monotonicity
preserving. The alternative is to make use of all the available values, i.e. upstream values,
values at the marching plane considered, and downstream values. This means that the solution
procedure, even in the fully supersonic regions, will depend on the downstream values. In this
case a much smaller CFL number is allowed for the supersonic planes in the space marching
zone and the whole space marching procedure as was outlined above has to be repeated
iteratively until convergence is achieved throughout the domain. Consequently, the
computation will take a longer time which is comparable to the computing time for a time
marching scheme. Numerical examples performed during the course of this research work have
produced good results using the former approach.

Numerical Results

To evaluate the behaviour of the proposed scheme two examples are provided. The first
example is for the case where the flow is supersonic every where. The second example
corresponds to the case of a supersonic flow with embedded subsonic regions.

Supersonic flow past a wedge

This example consists of a Mach 2 inviscid flow past a symmetrical wedge. The half angle of
the wedge is 10°. Due to the symmetry of the problem, only half of the domain is considered.
The analytical solution to this problem can be obtained from elementary gas dynamics [11].
The solution consists of two regions of constant states which are separated by an oblique shock
wave as is sketched in figure 8. From the information given in figure 8, it can be seen that the



flow remains supersonic behind the shock wave. Therefore, the flow field is supersonic
throughout the domain, and the space marching technique can be employed. A relatively
regular unstructured grid is employed initially for this problem. The mesh consists of 158
triangular elements and 99 points, and is shown in figure 9. The mesh is subdivided into 13
marching planes. Solution contours, by using the higher order scheme, for the pressure
coefficient are also depicted in figure 9. The solution is virtually identical to the solution
obtained by the higher order upwind scheme in its standard form. The convergence history for
this problem is shown in figure 13a. The residual is defined as the L, norm of the term Ap/At .
It should be noted that each iteration represents a sweep over the number of elements in the
marching plane, and not the total number of elements. It should also be mentioned that the
jumps in the convergence curve correspond to the beginning of iterations in the new marching
plane. To illustrate the application of the above mesh enrichment procedure. Using the solution
on the initial mesh, a series of successive refinements are performed. The number of elements
in the refined meshes are 487, 1203, and 2713, respectively. The computations, in each case,
has started from the converged solution on the previous mesh. The adaptively refined meshes
together with the contours of Cp are presented in figures 10, 11, and 12. These figures clearly
demonstrate the enhanced resolution obtained by using the mesh enrichment procedure. The
corresponding convergence curves are given in figures 13 and 14.

Supersonic flow past a blunt body

This example consists of a supersonic flow past a symmetrical blunt body. The free stream
Mach number of the flow is 6.57, and ¥ = 1.38. The solution to this problem exhibits a
subsonic region behind the bow shock. Due to symmetry, the computational grid covers only
half of the domain. The initial mesh used for this problem is shown in figure 15. The mesh
consists of 419 triangular elements and 243 points. The number of marching planes is 15. The
results obtained with the Streamwise Upwmd Petrov-Galerkin (SUPG) method of Hughes are
also available for this problem. The mesh employed for the SUPG calculations is also given in
figure 15. Calculations for this example are performed by using the higher order scheme. In
figure 16 the solutlon contours of pressure cocfficxcnt “and Mach number for the space
marchmg calculations are glven Usmg thc valucs of densuy, and Mach number along the axis
and over the surface of the blunt body, a comparison is made between the space marching and
the SUPG results. This is shown in figure 17. The corresponding comparisons for the velocity
components at the exit are presented in figure 18. As can be seen from these figures, although
the mesh used for the SUPG computations is finer than the one for space marching, good
resolution is obtained with the present algorithm. The convergence history for the space
marching calculations is shown in figure 19. The nearly flat region in the convergence curve
corresponds to the formation of the subsonic region. Two levels of mesh enrichment are used
to enhance the accuracy of the solution. There are 1121, and 2043 elements in the first and



second refined mesh respectively. These are presented in figure 20. In each case, the
converged solution is used as the initial condition for the next refined grid. Solution contours
of Cp and M for the first refined mesh are given in figure 21. Figure 22 illustrates the variation
of density and Mach number along the axis and over the surface of the blunt body, for the
space marching and the SUPG computations. The values of velocity components along the
outflow boundary are shown in figure 23. The corresponding results for the second refined
mesh are presented in figures 24, 25, and 26. Computed boundary of the subsonic region on
the final mesh is shown in figure 27. Figure 28 presents the convergence curves for these two
cases. As can be seen from these figures the solution obtained with the space marching scheme
compares well with the SUPG results. The resolution of the shock wave, even on a coarser
mesh, is sharper in the space marching results. The converged steady state solution, in each
case, has been obtained by one pass over the solution domain. No monotonicity problem was

observed for the higher order solution in this example.
THERMAL MODELLING
Transient Adaptive Remeshing Solution Procedure

An unstructured adaptive remeshing technique has been devised for the solution of transient
thermal problems. The method relies heavily upon upon the software written originally for the
solution of strongly transient compressible flows. The method advances the solution explicitly
in time for a prescribed number of steps and then subjects the computed solution to an error
estimation analysis. A new distribution of the mesh parameters is computed from the error
variation and the mesh is reconstructed locally in regions where the original mesh is regarded
as being either too fine or too coarse. In this way the available degrees of freedom are
efficiently utilised. The performance of the method has been illustrated by application to the
solution of a problem involving heat conduction with a square region with moving surface heat
sources. This code is currently being used at the Aerothermal Loads Branch, NASA Langley
R.C. for transient thermal structural analysis. The present version of the code can only handle
problems involving straight boundary segments but this restriction will be removed in the new
version of the code which will be released during the next twelve month period.

Implicit Thermal Analysis Solver

As simple explicit methods are generally regarded as inefficient for the solution of non-linear
heat conduction problems, an implicit formulation has been introduced. To maintain the overall
efficiency of the thermal analysis module, the solution of the implicit equation system is
achieved via a conjugate gradient procedure. A full analysis of the transient adaptive remeshing
process when used in conjunction with this solver is currently underway.



CONCLUSIONS

Work has progressed satisfactorily, in a number of different areas, in the directions needed for
successful completion of the project. However, a major concern are the problems which have
been encountered with the cell-centred upwind code, when applied to the analysis of high Mach
number viscous flows using meshes of triangular elements, as these problems have hampered
the investigations into the quadratic extension. It is to be hoped that these difficulties will be
overcome during the next phase of the research.
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figure Oa
surface discretisation of a shuttle vehicle

figure 0b
computed solution in the symmetry plane of the flow over a shuttle

figure Oc
geometrical definition for shuttle/booster configuration

figure 0d
surface discretisation of shuttle/booster configuration
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surface discretisation of shuttle/booster configuration
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marching planes for supersonic problem

figure 2

formation of the mesh refinement region Qp
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figure §

marching planes for supersonic flow containing subsonic regions
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figure 6

formation of the subsonic region near the body
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figure 7
Patch of elements used to calculate the values at vertex K

for fully supersonic flow
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figure 8

definition of the supersonic flow past a wedge problem
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figure 9
supersonic flow past a wedge; first mesh

(a) mesh; (b) pressure coefficient contours
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figure 10
supersonic flow past a wedge; second mesh

(a) mesh; (b) pressure coefficient contours
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figure 11
supersonic flow past a wedge; third mesh

(a) mesh; (b) pressure coefficient contours
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figure 12
supersonic flow past a wedge; forth mesh

(a) mesh; (b) pressure coefficient contours
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figure 13

supersonic flow past a wedge; convergence curves

(a) first mesh; (b) second mesh
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figure 14

supersonic flow past a wedge; convergence curves

(a) third mesh; (b) forth mesh
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figure 15

supersonic flow past a blunt body
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(a) first mesh for space marching; (b) SUPG mesh
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figure 16
supersonic flow past a blunt body; solution contours for the first mesh

(a) pressure coefficient; (b) Mach number
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figure 17

supersonic flow past a blunt body
values along the axis and over the surface; first mesh

(a) density; (b) Mach number
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figure 18

_supersonic flow past a Tﬂunt body

velocity components along the outflow; first mesh
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figure 19
supersonic flow past a blunt body

convergence history for the first mesh
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figure 20
supersonic flow past a blunt body

(a) second mesh; (b) third mesh




figure 21

supersonic flow past a blunt body
solution contours for the second mesh

(a) pressure coefficient; (b) Mach number
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figure 22
supérsdnic’ flow past a blunt body
values along the axis and over the surface; second mesh

(a) density; (b) Mach number
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figure 23
supersonic flow past a blunt body

velocity components along the outflow for the second mesh



figure 24

supersonic flow past a blunt body
solution contours for the third mesh

(a) pressure coefficient; (b) Mach number
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figure 25

supersonic flow past a blunt body
values along the axis and over the surface; third mesh

(a) density; (b) Mach number
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figure 26~

supersonic flow past a blunt body

velocity components along the outflow for the third mesh



figure 27
supersonic flow past a blunt body

computed subsonic region on the third mesh
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figure 28
supersonic flow past a blunt body

convergence curves for (a) second mesh; (b) third mesh



